12 research outputs found

    Two Results about Quantum Messages

    Full text link
    We show two results about the relationship between quantum and classical messages. Our first contribution is to show how to replace a quantum message in a one-way communication protocol by a deterministic message, establishing that for all partial Boolean functions f:{0,1}n×{0,1}m{0,1}f:\{0,1\}^n\times\{0,1\}^m\to\{0,1\} we have DAB(f)O(QAB,(f)m)D^{A\to B}(f)\leq O(Q^{A\to B,*}(f)\cdot m). This bound was previously known for total functions, while for partial functions this improves on results by Aaronson, in which either a log-factor on the right hand is present, or the left hand side is RAB(f)R^{A\to B}(f), and in which also no entanglement is allowed. In our second contribution we investigate the power of quantum proofs over classical proofs. We give the first example of a scenario, where quantum proofs lead to exponential savings in computing a Boolean function. The previously only known separation between the power of quantum and classical proofs is in a setting where the input is also quantum. We exhibit a partial Boolean function ff, such that there is a one-way quantum communication protocol receiving a quantum proof (i.e., a protocol of type QMA) that has cost O(logn)O(\log n) for ff, whereas every one-way quantum protocol for ff receiving a classical proof (protocol of type QCMA) requires communication Ω(n/logn)\Omega(\sqrt n/\log n)

    New Bounds for the Garden-Hose Model

    Get PDF
    We show new results about the garden-hose model. Our main results include improved lower bounds based on non-deterministic communication complexity (leading to the previously unknown Θ(n)\Theta(n) bounds for Inner Product mod 2 and Disjointness), as well as an O(nlog3n)O(n\cdot \log^3 n) upper bound for the Distributed Majority function (previously conjectured to have quadratic complexity). We show an efficient simulation of formulae made of AND, OR, XOR gates in the garden-hose model, which implies that lower bounds on the garden-hose complexity GH(f)GH(f) of the order Ω(n2+ϵ)\Omega(n^{2+\epsilon}) will be hard to obtain for explicit functions. Furthermore we study a time-bounded variant of the model, in which even modest savings in time can lead to exponential lower bounds on the size of garden-hose protocols.Comment: In FSTTCS 201

    Quantum Query Complexity of Subgraph Isomorphism and Homomorphism

    Get PDF
    Let HH be a fixed graph on nn vertices. Let fH(G)=1f_H(G) = 1 iff the input graph GG on nn vertices contains HH as a (not necessarily induced) subgraph. Let αH\alpha_H denote the cardinality of a maximum independent set of HH. In this paper we show: Q(fH)=Ω(αHn),Q(f_H) = \Omega\left(\sqrt{\alpha_H \cdot n}\right), where Q(fH)Q(f_H) denotes the quantum query complexity of fHf_H. As a consequence we obtain a lower bounds for Q(fH)Q(f_H) in terms of several other parameters of HH such as the average degree, minimum vertex cover, chromatic number, and the critical probability. We also use the above bound to show that Q(fH)=Ω(n3/4)Q(f_H) = \Omega(n^{3/4}) for any HH, improving on the previously best known bound of Ω(n2/3)\Omega(n^{2/3}). Until very recently, it was believed that the quantum query complexity is at least square root of the randomized one. Our Ω(n3/4)\Omega(n^{3/4}) bound for Q(fH)Q(f_H) matches the square root of the current best known bound for the randomized query complexity of fHf_H, which is Ω(n3/2)\Omega(n^{3/2}) due to Gr\"oger. Interestingly, the randomized bound of Ω(αHn)\Omega(\alpha_H \cdot n) for fHf_H still remains open. We also study the Subgraph Homomorphism Problem, denoted by f[H]f_{[H]}, and show that Q(f[H])=Ω(n)Q(f_{[H]}) = \Omega(n). Finally we extend our results to the 33-uniform hypergraphs. In particular, we show an Ω(n4/5)\Omega(n^{4/5}) bound for quantum query complexity of the Subgraph Isomorphism, improving on the previously known Ω(n3/4)\Omega(n^{3/4}) bound. For the Subgraph Homomorphism, we obtain an Ω(n3/2)\Omega(n^{3/2}) bound for the same.Comment: 16 pages, 2 figure

    Communication Memento: Memoryless Communication Complexity

    Get PDF
    We study the communication complexity of computing functions F:{0,1}n×{0,1}n{0,1}F:\{0,1\}^n\times \{0,1\}^n \rightarrow \{0,1\} in the memoryless communication model. Here, Alice is given x{0,1}nx\in \{0,1\}^n, Bob is given y{0,1}ny\in \{0,1\}^n and their goal is to compute F(x,y) subject to the following constraint: at every round, Alice receives a message from Bob and her reply to Bob solely depends on the message received and her input x; the same applies to Bob. The cost of computing F in this model is the maximum number of bits exchanged in any round between Alice and Bob (on the worst case input x,y). In this paper, we also consider variants of our memoryless model wherein one party is allowed to have memory, the parties are allowed to communicate quantum bits, only one player is allowed to send messages. We show that our memoryless communication model capture the garden-hose model of computation by Buhrman et al. (ITCS'13), space bounded communication complexity by Brody et al. (ITCS'13) and the overlay communication complexity by Papakonstantinou et al. (CCC'14). Thus the memoryless communication complexity model provides a unified framework to study space-bounded communication models. We establish the following: (1) We show that the memoryless communication complexity of F equals the logarithm of the size of the smallest bipartite branching program computing F (up to a factor 2); (2) We show that memoryless communication complexity equals garden-hose complexity; (3) We exhibit various exponential separations between these memoryless communication models. We end with an intriguing open question: can we find an explicit function F and universal constant c>1 for which the memoryless communication complexity is at least clognc \log n? Note that c2+εc\geq 2+\varepsilon would imply a Ω(n2+ε)\Omega(n^{2+\varepsilon}) lower bound for general formula size, improving upon the best lower bound by Ne\v{c}iporuk in 1966.Comment: 30 Pages; several improvements to the presentation

    EXPLORING DIFFERENT MODELS OF QUERY COMPLEXITY AND COMMUNICATION COMPLEXITY

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    On the Fine-Grained Query Complexity of Symmetric Functions

    Full text link
    This paper explores a fine-grained version of the Watrous conjecture, including the randomized and quantum algorithms with success probabilities arbitrarily close to 1/21/2. Our contributions include the following: i) An analysis of the optimal success probability of quantum and randomized query algorithms of two fundamental partial symmetric Boolean functions given a fixed number of queries. We prove that for any quantum algorithm computing these two functions using TT queries, there exist randomized algorithms using poly(T)\mathsf{poly}(T) queries that achieve the same success probability as the quantum algorithm, even if the success probability is arbitrarily close to 1/2. ii) We establish that for any total symmetric Boolean function ff, if a quantum algorithm uses TT queries to compute ff with success probability 1/2+β1/2+\beta, then there exists a randomized algorithm using O(T2)O(T^2) queries to compute ff with success probability 1/2+Ω(δβ2)1/2+\Omega(\delta\beta^2) on a 1δ1-\delta fraction of inputs, where β,δ\beta,\delta can be arbitrarily small positive values. As a corollary, we prove a randomized version of Aaronson-Ambainis Conjecture for total symmetric Boolean functions in the regime where the success probability of algorithms can be arbitrarily close to 1/2. iii) We present polynomial equivalences for several fundamental complexity measures of partial symmetric Boolean functions. Specifically, we first prove that for certain partial symmetric Boolean functions, quantum query complexity is at most quadratic in approximate degree for any error arbitrarily close to 1/2. Next, we show exact quantum query complexity is at most quadratic in degree. Additionally, we give the tight bounds of several complexity measures, indicating their polynomial equivalence.Comment: accepted in ISAAC 202

    Decision Tree Complexity versus Block Sensitivity and Degree

    Full text link
    Relations between the decision tree complexity and various other complexity measures of Boolean functions is a thriving topic of research in computational complexity. It is known that decision tree complexity is bounded above by the cube of block sensitivity, and the cube of polynomial degree. However, the widest separation between decision tree complexity and each of block sensitivity and degree that is witnessed by known Boolean functions is quadratic. In this work, we investigate the tightness of the existing cubic upper bounds. We improve the cubic upper bounds for many interesting classes of Boolean functions. We show that for graph properties and for functions with a constant number of alternations, both of the cubic upper bounds can be improved to quadratic. We define a class of Boolean functions, which we call the zebra functions, that comprises Boolean functions where each monotone path from 0^n to 1^n has an equal number of alternations. This class contains the symmetric and monotone functions as its subclasses. We show that for any zebra function, decision tree complexity is at most the square of block sensitivity, and certificate complexity is at most the square of degree. Finally, we show using a lifting theorem of communication complexity by G{\"{o}}{\"{o}}s, Pitassi and Watson that the task of proving an improved upper bound on the decision tree complexity for all functions is in a sense equivalent to the potentially easier task of proving a similar upper bound on communication complexity for each bi-partition of the input variables, for all functions. In particular, this implies that to bound the decision tree complexity it suffices to bound smaller measures like parity decision tree complexity, subcube decision tree complexity and decision tree rank, that are defined in terms of models that can be efficiently simulated by communication protocols

    Graph Properties in Node-Query Setting: Effect of Breaking Symmetry

    Get PDF
    The query complexity of graph properties is well-studied when queries are on the edges. We investigate the same when queries are on the nodes. In this setting a graph G = (V,E) on n vertices and a property P are given. A black-box access to an unknown subset S of V is provided via queries of the form "Does i belong to S?". We are interested in the minimum number of queries needed in the worst case in order to determine whether G[S] - the subgraph of G induced on S - satisfies P. Our primary motivation to study this model comes from the fact that it allows us to initiate a systematic study of breaking symmetry in the context of query complexity of graph properties. In particular, we focus on the hereditary graph properties - properties that are closed under deletion of vertices as well as edges. The famous Evasiveness Conjecture asserts that even with a minimal symmetry assumption on G, namely that of vertex-transitivity, the query complexity for any hereditary graph property in our setting is the worst possible, i.e., n. We show that in the absence of any symmetry on G it can fall as low as O(n^{1/(d + 1)}) where d denotes the minimum possible degree of a minimal forbidden sub-graph for P. In particular, every hereditary property benefits at least quadratically. The main question left open is: Can it go exponentially low for some hereditary property? We show that the answer is no for any hereditary property with finitely many forbidden subgraphs by exhibiting a bound of Omega(n^{1/k}) for a constant k depending only on the property. For general ones we rule out the possibility of the query complexity falling down to constant by showing Omega(log(n)*log(log(n))) bound. Interestingly, our lower bound proofs rely on the famous Sunflower Lemma due to Erdos and Rado

    Secure Software Leasing Without Assumptions

    Get PDF
    Quantum cryptography is known for enabling functionalities that are unattainable using classical information alone. Recently, Secure Software Leasing (SSL) has emerged as one of these areas of interest. Given a target circuit CC from a circuit class, SSL produces an encoding of CC that enables a recipient to evaluate CC, and also enables the originator of the software to verify that the software has been returned -- meaning that the recipient has relinquished the possibility of any further use of the software. Clearly, such a functionality is unachievable using classical information alone, since it is impossible to prevent a user from keeping a copy of the software. Recent results have shown the achievability of SSL using quantum information for a class of functions called compute-and-compare (these are a generalization of the well-known point functions). These prior works, however all make use of setup or computational assumptions. Here, we show that SSL is achievable for compute-and-compare circuits without any assumptions. Our technique involves the study of quantum copy-protection, which is a notion related to SSL, but where the encoding procedure inherently prevents a would-be quantum software pirate from splitting a single copy of an encoding for CC into two parts, each of which enables a user to evaluate CC. We show that point functions can be copy-protected without any assumptions, for a novel security definition involving one honest and one malicious evaluator; this is achieved by showing that from any quantum message authentication code, we can derive such an honest-malicious copy-protection scheme. We then show that a generic honest-malicious copy-protection scheme implies SSL; by prior work, this yields SSL for compute-and-compare functions.Comment: 41 pages, 5 figure
    corecore